Macroeconomics Week 1 Ricardo Gouveia-Mendes ricardo.mendes@iscte-iul.pt

Undergraduate in Economics 1st Semester 2023-24

iscte

BUSINESS SCHOOL

Welcome to julia and Pluto.jl

Why teaching Economics and julia?

- The **nature** of Economic Science
 - Human Science which object?
 - Data
 - Mathematics is to Economics as Cartography to Geography
- The Julia programming language
 - General purpose programming language born in 2015 at MIT
 - The high performance promise: Walks like Python runs like C

What about Pluto.jl 2?

- Pluto.jl is a **Julia package**
- It provides Notebooks as web-based IDEs for Julia
 - Plain Julia files: *.jl
 - Structured in cells that allow multiple types of contents
 - Chunks of Julia code to run calculations
 - Text to be formatted
 - Reactive: all the code is updated when something changes
 - Interactive tools: ideal for learning

First things first

- **1.** Zipped files
- 2. Opening Julia
 - a. Standard mode and Pkg mode **b.** Installing packages: add Package
 - **c.** Updating packages:] up
- **3.** Running Pluto.jl: **import Pluto; Pluto.run()** in standard mode
- 4. Open a Notebook
 - **a.** Static and Dynamic versions
 - **b.** Checking the loading progress
 - **c.** Checking the Notebook location in your PC
- 5. Save a Notebook: Ctrl + S

Working with julia and Pluto.jl

Cells with text: basic formatting

The simplest solution is to use Markdown blocks

1 md"This is a Markdown single line input text."

md""" This is a Markdown multiple line input text. ** ** **

• **Text symbols** declare formatting (as in WhatsApp!)

1	md"'	Y YY
2		**bold** or *italics* or ***bold and italics***
3		
4		# Header
5		## Sub-header
6		### Sub-sub-header
7	** ** **	

Cells with text: lists

• Ordered lists

• Unordered lists

Cells with text: mathematics

To typeset mathematics we can use LaTeX syntax inside a Markdown block

Inline mode

```
1 md"""
```

```
Our equation can be written as y=2x^3 in the same line as other text.
3
  ** ** **
```

Display mode

```
1 md"""
      The next formula will be centered in a stand-alone paragraph:
3
   s_z = \int \{a\}^{b} x^2 dx
  ** ** **
```


Cells with Julia code: input rules

• Each cell must contain a **single line of code**

1 2 + 3

• Otherwise we need to use a **begin...end** block

Any Unicode character or even Emojis may be used in your code

$1 \delta = \Theta \# \ \text{delta} + Tab$

Cells with Julia code: run and control output

- To run a cell (i.e., execute the code inside), press Shift + Enter or hit the bicon in the bottom-right corner of the cell
- To hide the output use ; at the very end like in:

```
1 begin
2 	 x = 2 + 3
3 	 y = 4 + 5
4 	 z = x + y
5 end;
```


Algebra and Julia: calculator way

- Maybe you are not, but Julia is an expert in Algebra 😏
- You may use Julia as a super-power calculator
 - Defining a Matrix

1 Romeo = [1 2; 3 4]

Calculate the determinant of Romeo

1 det Romeo = $1 \times 4 - 2 \times 3$

Write Romeo's adjunct matrix

1 adj Romeo = [4 -2; -3 1]

Invert Romeo

1 inv_Romeo = (1 / det_Romeo) * adj_Romeo

SCHOOL

Algebra and Julia: built-in functions

• Are we correct?

1 inv Romeo * Romeo

Clever alternatives

1 inv(Romeo)

Romeo' #Careful: this is the adjunct not the transpose()

1	begin	
2	using LinearAlgebra	#Several functions are provided: tr()
3	det (Romeo)	<pre>#eigenvals(), eigenvecs(), factorize()</pre>
4	end	

Using sophisticated packages

- Pacakges allow you to benefit from the work of others
- For **data analysis** we will use:
 - DataFrames.jl
 - CSV.jl
 - PlotlyJS.jl and/or Plotly.jl
 - Statistics.jl

• For numerical solution of complex systems of equations we will use NLSolve.jl

